On continuation of regular solutions of partial

differential equations to compact convex sets

By Akira KANEKO

§1. Introduction.

We consider a simple case of the problem of continuation of solutions of
partial differential equations with constant coefficients. A system of partial dif-
ferential equations with constant coefficients is overdetermined if and only if
any solution defined on the complement IU\K of a compact convex set K relative
to a domain U can be extended to a solution on U (see Malgrange [11] and
Palamodov [12] in the case of distribution solutions, and Komatsu [7], {9] in the
case of hyperfunctions.). When we consider solutions in some more regular
categories, however, the class of differential equations whose solutions never
have any compact convex singular set contains more than the overdetermined
systems. The first general result in this direction appeared rather recently.
Grusin [2] determined the class of single equations which have no infinitely
differentiable solutions with unremovable isolated singularities, under the addi-
tional condition that one considers only those solutions which can be extended
as distributions to the isolated singularity. This result was generalized to the
case of systems by Palamodov [12]. On the other hand, Grusin [3] considered
the removability of isolated singularities of infinitely differentiable solutions
without any additional condition and established a sufficient condition for it.
Following the method of [2], Kaneko [b] proved that a single equation p(D)u==0
has no real analytic solutions with isolated singularities if and only if no factor
of the irreducible decomposition of p({) is elliptic. We prove here that this
class of equations is just the class of those equations which have no real analytic
solutions with compact convex singular set. The case of infinitely differentiable
solutions is also considered. We employ the method of [8], as well as the theory
of hyperfunctions. Especially, the theory of local operators (differential operators
of infinite order) plays an important role.

We are concerned with the case of single equations for the sake of simplicity.
The case of general systems will be discussed elsewhere. I am grateful to
Professor Komatsu for his hearty encouragement and kind advices on corrections
and improvements.
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§2. Hyperfunctions and a regularity theorem

Let p(2) be a polynomial of n variables &, -+, L., p(D) be the corresponding
e O
partial differential operator, where D=(Dy,- -, Dy, Dr—:\/—l‘a’;1 ete. Z(U) de-

notes the hyperfunctions on the open set UCR", ZZ[K] denotes the hyperfunc-
tions with supports in the compact convexr set KC R We employ similar
notations: .97 (U) for the real analytic functions, & ~(U), & “[K] for the
infinitely differentiable functions, and Z'(U), Z'|K] for the distributions.
FAU) denotes the hyperfunction solutions of the equation p(D)u=0. ZIK],
7 (U) ete. have similar meanings.

For the general theory of hyperfunctions we refer to [7], [8], [9] etc. We
recall here only the following results. <#Z[K] is considered as the dual of the
space Y (K) of the real analytic functions on K with the inductive limit
topology, namely, <#[K] is considered as the space of the analytic functionals
with supports contained in K. For ue &7 (K] we define its Fourier transform
(%) by the duality just stated : @():~{ev~1=-¢, u(x)>, where z-{=={x, =2+ -+
2.0, . @8 is an entire function characterized by the following estimate:

[ £ Ceexp (el +Hi(D)) for any >0,

where Hﬁ(i):'fsgg Re{x, v~/ —12> is the supporting function of K. Let ue &#[K]
and v€ <#Z[L] be arbitrary two hyperfunctions of compact support. The con-
volution uxv of u and v is defined to be the hyperfunction with support in K-+L
which acts as an analytic functional on ¢ €. (K- L) by the formula

Lo, x> e@+y), wy)y, v@). -

For the special case K=:{o}, <& (o] is the hyperfunctions with supports at
the orvigin, and its Fourier image is the space of all entire functions which
satisfy the following growth condition:

lJO = Coexp(ell) for any ¢>0.
We call these entire functions “infra-exponential” after Sato. Infra-exponential
functions are also characterized by the growth condition of the coefficients of
the Taylor expansion. J(&)==Zay....x, 58+ -C4" is infra-exponential if and only if

Tim st e/ (g ol Uk, 1=0. In the case of one variable, J{) is infra-
exponential if and only if J({&) has a factorization

J(g)::—:,:"!kﬁl(l_ E_> (- Zlar Slaral - 1)

Xp
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which converges uniformly on every compact set of C, whereﬁ~—>0 (k—><) and
277

by E}; converges to a finite value (Lindeldf {10]).

For each J€ &7 o], J* acts as a differential operator of infinite order. In
fact, let >a.2* be the Fourier transform of J, and let v € ¥ (K), where o€ K.
Then it follows <¢, J>=3a;D*c(0), thus Jxo={olx+¥y), JW) y=2aDt¢=J(D)¢,
and the last sum converges in the topology of & (K). The operator J(D) is
also applied to the germs of holomorphie functions. These assertions are obvious
from the estimate of the Taylor coefficients of J(£). Now, by the duality, the
differential operator J(D) is also applied to <F[K]. For u€ c#F[K], it is easily
seen that J(D)u agrees with the convolution J*u defined above. J{D) does not
change the support of #. Therefore we can apply J(D) to the germs &5 of
hyperfunetions, or to £Z(U). The operator J(D), defined in this way, is called
the local operator with constant coefficients. When £Z(U) is represented as
FBUY=HNU, &)= VEU)/ ‘i (V)P the operation of J* or J(D) just agrees
with one induced by the (sheaf’i)omomorphism of) differential operator of infinite
order J(D): -7 Finally we remark that <Z [o]22.2"'[o], hence all the dif-
ferential operators with constant coefficients in the ordinary sense are contained
in the local operators. For the general theory of local coperators we refer to
the work of T. Kawai or that of M. Sato for the case of variable coefficients.
Their papers will soon appear somewhere (cf. [6], [13]).

THEOREM 1. Assume that p+0 is a differential operator with constant
coefficients of finite order, and that K is a compact convex set contained in an
open set UCR". Then,

B U)N (UK. 7 (U)
@U)N e (U\K)e & 5(U),
BN (UNK) 75U .

Proor. (Cf. Agranovi¢ [1]). p(D)E=0 has a solution F¢ 22/(R"). Let «

Because of the choice of a, p(D)(au)=0 on a sufficiently small neighborheood of
K. Therefore we find from this equality that if ue <7(U\K), then u€ &' (U),
and if ue &@=(U\K), then ue & =(U). In the case of ue . (U\K), we know

11 See {7] or [8]. This notation was introduced by R. Harvey.
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already that we @“(U). Further, we represent E as E=4"F in a neighborhood
4V of K, where 4 is the Laplacian, and F is a summable function on 4V, and
it is assumed that V5K is a neighborhood of K and suppac2V, a=1 on V.
(We assumed for simplicity that K contains the origin.) Then, in the neigh-
borhood V of K

u=4¥ Fxp(D)(au)=Fx4"p(D)(au) ,

hence we get the estimate
sup |u(z)| = Csup |4V p(D)(au)(x)]
z€V el
< Csup {14¥ p(D)(au)(x)}, 2 € supp a Nsupp (1—a)} .

This estimate alse holds good with the solution D*u of the equation p(D)u=0.
Thus
sup 1 DRu(x)] = C sup {|4¥ p(D) e D*u)(z)], € supp a Nsupp (1—a)} .

Let M be the order of the operator 4¥p(D). Now we use the Leibniz formula,
and notice that u is real analytic on U\K, so that on the compact subset
supp @ Nsupp (1—~a@) of U\K, the estimate sup|D*u(x){<C-B'*'k! holds for each
k, with some constants C, B independent of k. Thus we can rewrite the above
inequality as follows:

sup| Dfu(x)! éCI Zﬂ {|LD**™u(z)|, z € supp a Nsupp (1 —a)}
miL

z2€V

=C EMB‘k"'“'(k+m)! .

jmis

Here C denotes the various constants depending on the estimates of the deriv-
atives of « of order up to M, and not depending on k. The last side of the
above inequality is estimated by CM- B¥(B(M+1)"¥ik! in an elementary way.
This shows that u« is also real analytic on V. q.e.d.

COROLLARY 2. B[K 1= 4[Kl= & 5[K]=0.

PrOOF. A similar proof shows that #=0 on U\K implies #=0 on the whole
of U.

§3. Continuation of regular solutions.
Theorem 1 on regularity can be paraphrased as follows:
SUNKY A UYS&EH(UNKYE US43 (UNK) 2 (U)S B UNKY BAU Y ,

that is, these are all injections. Hence we can treat all the problem concerning
the continuation of solutions in the last space Z{(U\K)/&Z{U), where the
Aabbiness of hyperfunctions (the fact that hyperfunctions can always be extended
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to any larger domain) makes the theory transparent. Qur main result is:

TBEOREM 3. Let p(C) be a polynomial which is not a constant, and let p(D)
be the corresponding differential operator. Then, in order that the space”
So(UNK)[ S 5(U)=0, it is necessary and sufficient that p(C) has no elliptic
Jactor.

As remarked above, Y (U\K)/(U)G BAU\K)I £Z(U) is injective, so we
only have to prove the following: In order that YV, (U\K)c GZ(U), it is
necessary and sufficient that p(&) has no elliptic factor.

Proof of the mecessity is easy. Suppose that p has an elliptic factor 7p,,
and p=pf-q, p,Yq. We suppose for simplicity o€ K. Then the fundamental
solution E of pf(D)E=3 belongs to S¥(U\K), but not to &Z(U). In fact, if
there exists u€ &Z5(U) whose restriction to U\K is equal to E, then it follows

P(DNE—u)=p(D)E=q(D)pH(D)E=q(D)d .

On the other hand, E--4=0 on U\K, hence we can consider that E—ue F[K],
and its Fourier transform is an entire function. Thus we apply the Fourier
transform on the above equality and get p(z)(/Etz:):q(C). Due to Hilbert’s
Nullstellensatz, this gives a contradiction if we put p,({)=0. The necessity is
proved.

Before beginning the proof of the sufficiency, we construct an isomorphism
of FBU\K)/Z(U) to a space of holomorphic functions. Let p=pFi-..pkt be
the irreducible decomposition. Changing the coordinates, we can suppose, with-
out the loss of generality, that p,({),- -, p.({) are monic polynomials with respect
to {,, namely, that the algebraic varieties N;={py({)=0}cC*, 21=1,---,1 are all

normally placed with respect to {,-axis. a{"or the entire function ¢ on C", we
A=1
O Ty
of holomorphic functions on N;. The map d is defined to be the direet sum
d={d}yy,... ;- ,
Now, choose u€ <Z(U\K) arbitrarily and let [«] denote an element of <& (U)
which is an extention of . By the assumption for #, we have p(D)[u]e.@[ IR

t
define the map d;: ¢rod ;0= (?3

gol ) whose image is a column
Na

Applying the Fourier transform we obtain an entire function p(]))[ }, and
operating d to this, we finally obtain a ecolumn of holomorphxc functions on {N;}
which satisfy the same growth condition as <#[K ] Let #| [K J{N} denote the

space of columns of holomorphic functions on {N,;} which have the growth prop-
erty just described above. Then we have

2 We can prove that this quotient space depends only on K, using the existence theorem:
p(D)sr(L)=sr(L) for any compact convex set L. See [5].
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LEMMA 4. The operator

d: (UK BAU)—> 7 (KUN:}
u mod U )—d - pD)u)={d;p(D)u}}
1s well defined, and injective.

Proor. Let [#], [#], be any two extensions of u€ &#(U\K). The difference
fu]—[ul; belongs to <Z{K], thus the entire function

P~ D)= (el Laho)

obviously belongs to the kernel of d. Therefore d-u is determined independently
of the choice of the extension [u]. Clearly, <#.(U) belongs to the kernel.
Next we prove the injectivity. Suppose d-u- d~m}:0, where {u] is an
extension to £Z(U) of an clement %€ jp(U\K) Then the entire function
p(D [u] satisfics the condition :;;p(l))[ ]I =20, k=0,1,---,k;—1 for each A

Na
Thus ;uD)[u] is divisible by ecach p!:. Applying the theorem of Hartogs we
can write m‘zf]f::p(C)F(C), with an entire function F({). Here by the well
known inequality (see e.g. Hérmander [4] Lemma 3.1.2), again F({) has the same
growth property as j@ﬁk] Hence there exists ve &#[K], such that F({)=7,
and we have p(D)ul=p(D)v. This shows that u has an extension [u]—v which
belongs to £Z4U). Thus u=0 as an element of <ZJ(U\K)/&Z(U). g.e.d.

REMARK. It can be shown that d is an isomorphism onto the subspace of
:@j;TI{]{N;} whose elements belong locally (in the sense of germs) to the image
of d: ¢ »¢% This is proved from the vanishing of cohomology with the growth
condition of the type 5«;{1{!

Regular solutions in <Z,(U\K) are mapped by d, constructed above, to
holomorphic funections on {N;} satisfying more restricted growth conditions than
the type é?mlkf] In fact, we have the following:

LEMMA 5. On {Ni} the following estimates hold :

If ue FLUNK), then |d-ulsC(14+1ED* exp (He(L) +¢[Im )
for Ye>0, 3k=k. .

If we & (UNK), then |d-ul= Cr. (14 12D% exp (Hg(D) +<lIm {N)
Jor Ve>0, Yk (integer).

If e .V U\K), then |J(&)d ul<Cy. exp (Hy($)+<|Im &)
for ¥e>0, VJ (entire infra-exponsntial function).
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Proor. First we give another expression of the map d. Let a(z) be an
element of & 7(U) whose value is equal to 1 on a sufficiently small neighborhood
of K. Then for ue &7 ,(U\K), p(D)(aw) is identically zero on some neighborhood
of K. Extending this function by zero on K, we obtain an element belonging
to &/(U\K) (distributions with supports contained compactly in U‘K). Let
[p(D)(au)], denote this element. Then we have obviously

p(DYaful)={p(D)(auw)ly+ p(IH[u] .
Here «ful] is really of compact support. Applying the Fourier transform to both

sides and operating d, we have

0=d-p(O)a [ ] din(D) au)]o+d p [u]
Hence

d-u=d-p(D)ul = —dpDNaw], .

The last term is the desired expression. (See the remark below.)

By this expression, and by the Paley-Wiener theorem, we immediately obtain
the first two statements of the lemma. Concerning the last statement we make
another device. Let u be an element of Y (U\K). For any entire infra-
exponential funection J(£), J(D)u again belongs to S (U\K), especially to
& HUNK), (where J(D) is the local operator corresponding to J(€)). Thus d-J(Du
satisfies the second estimate of Lemma 5. On the other hand, we have

e

dJ(Dyu={~d [p(D)(a(x)J (Dyulo}
A d: T DN Dyenle)H —dsp D ad Dyt T Dyaaely)
A J O D) ey} H — dapO[a T Dyu—T( Dyanle)
/N‘/
={—d; J(Olp(D)aulo} .

Moreover, we have

P
JOIp(D)aul,
e . Na
dJO[p(D)auly=
Jkr=1 e g
:V:I = (J: [p(D)tru]) "
N ‘ v,
o : ., ., .. %
gkt . b ok ——
o JE), - ',J(s)'J i"'"‘ [p(D)(ru] .
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Now that E-J(D)u satisfies the second estimate of Lemma 6, it follows from
e’

the first row of this formula that [p(D)aul,y, satisfies the last estimate of the

]

7

ponential, we see from the second row of the formula that

lemma for any infra-exponential function J({). Since JK&) is also infra-ex-

aJ
9,

a

N - aCu

P e el
J(©&) ——p(D)yauly

(J(C)[p(D)au]o )

M—( 2 J(i))[m

0z,

Na

also satisfies the same estimate. Repeating this, we get the desired estimate.
q.e.d.

REMARK. 1) Grusin [3] and Palamodov {12] employ this expression of d as
their definition throughout. 2) If we take for a(x) a characteristic function,
this paraphrase of d holds as well for any hyperfunction u, but for the present,
this gives nothing more.

In order to reformulate the last condition of the preceding lemma to a more
convenient one, we give another lemma.

LEMMA 6. There exist entire infra-exponential functions J.(§), v=1,---, N,
satisfying

C-exp( 43 m“‘é_«f;im)gm<z>i+---+|‘r~<:n :
Here A i3 a positive constant which may be chosen arbitrarily large. C,M
are positive constants depending on A.

Proor. First we consider the case of one variable. We make somewhat
general treatment for the sake of simplifying the notations. Let ¢(f) be a
function of ¢ defined for t=1 such that ¢(1)=1, and ¢({)->c0 monotonely when
t »oo. We consider the funection J(2) defined by the infinite product

o0 2
J@) = I (1—-—2—).
® m=1 ( 1 (me(m))* )

This is an entire function because 2-———1 - = 2-}- < oo by the assumption.
_ ) (mp(m))? m?

This function admits the following estimate from below: Let 2 and y be re-

spectively the real and the imaginary part of z. Then in the region where

yr23a7,

’ (1 a (17%:’(2711))2 ) lgi (1 - ('rizs;ﬂy:))g )2+ ( ('rn::;z:ln,))2 )2

o ey | @yl
(me(m)? ~ (mo(m))
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I

2 2 2 232 2 2
(mem)? * almp(m)" (1 2<mc,o<m>)2)

Thus for any z satisfying |Imz/=+"3|Rez|,

- =2 ¥ o=l
W@z I (1 +2(m<p(m))2); % <1 % 2(m¢(m))2> ’

Choosing M so as to satisfy Me(M)<|z|S(M+1)e(M-+1), we have T%;;l
mo(m))?
for 1I=m=M, and M M¢e(M)<|2|, so that

12| 2|
Mz -1z -
T o(M+ 1) ¢(lz]-+1)

Here we used the fact that ¢(t) monotonely inereases. Thus we obtain

oz =33 fon((wd) )

The function J(z) is evidently infra-exponential by the criterion of Lindeléf
mentioned at §2. Direct verification is also easy. In fact, for any ¢>0, we
can prove, by an elementary calculation, that

@) < i (1 +—-~'—’€‘—-~—)gc, i (1 el )<c,e=~.='.
(me(m))? m=1
Here C.—:"2¢7'¢™Y i3 a constant depending only on e.
Now we define

\/lx

v
Ji)=d(z), JY2)=Je 3 2), -, JAz)=J(e® 7).
For these entire infra-exponential functions we have, for any zeC,

01\ 0 R 9 -g- 3 l2
3@ +1T8@) - -+ 1T3@)] = 5 exp((“’g )(,O(IzH 1)>

In the case of several variables, we take the products ‘l’i JL (L) in all the
=1
possible way, where J (-) is one of J},---,J} constructed above. Then if

Ji{L), -+, Jy(C) are the whole of these product functions ordered in an appropriate
way, we have

WO+ - -+ Tl = TLATUC 4 - -+ ITHED

=1

<
2(3) en(or 35 )
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Now we apply the estimates obtained above to the function Mt):%:ll
This function satisfies ¢(1)==1, and ¢(t)—>co monotonely when t—co. Thus, when
Ji,- -, J are the functions constructed above corresponding to gc(t):l—(g—(1to:g-——~—€%:2

we have the estimate from below

A T (2 T 11 N
@ @1z ) exp A B pn

Here the constant Ar”lOg(%)-logM is as large as we wish when we choose M

large. Thus the lemma is proved.
REMARK. The formulation of this lemma for general ¢ is possible. It is
of some interest, but it is not necessary for further discussions.

The advantage of the function io'g\—:”.l is shown by the following lemma.
Y
LiMMA 7. Let F(2) be a holomorphic function of one variable on Rezz=0,

which satisfies for some constants A>0, M =20, C>0

. |zl Y
F)l s Cexp| —24——"—— + AR .
= ehp( log (lzl-+M) ezl)
Then F(z2) 1s bounded on Rezz0.
Proor. Consider the transform z == -— w of the variables, where log
log (w-+1)
denotes the branch for which log1=0. This maps Rewz=0 into Rezz=0. For,
we have
Rez-Re Y ~Re Rew++ ~1Imw

, == Re —
log w41) " log lw+1++/ “Targ (w-+1)
__ Rew-loglw+1] +Imwarg (w+1)
(log |w--1])*--(arg (w-+1))*

Because of our choice of the branch of log, Imw and arg (w-+1) have the same

sign, so that this value is non-negative when Rew=0. Thus Rezz20 if Rewz=0.

The composed function G('w):F(——“Mw —) is holomorphic on Rew=0, and sat-
log (w--1)
isfies the estimate

1Gw)| §C9XD(A52U§Cexp( iB—gJ;%Iﬂ) .

Therefore |G(w)| < Ceexp(clw]) for any ¢>0. Moreover G(w) is bounded on Rew
=-0. In fact, put w=+ -1y, ~~co<y<oco, then,
z:;'l u) oo J:‘—‘i,?
log w+1)  logv/ 145+~ —larg(1++ —1p)
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so that |z[<!v] when |5/=+¢*—1. Thus we have, for |7] =V -1,

|z) ‘
—2A4 —————— - A|R
log (|z|+ M) IRez

)/ P || S
v (log VIE72)+ (arg (14 —17) log (in} + M)

‘%Alzr!-larg(lix_/_:iv)l '
(logv/'1+79)?

Here the two terms have the same growth order —,——Ml”w when [7] is large.

(log 71
Therefore, noticing that larg(l+i7;)l§% <2, we see that the last side becomes

negative when |5] is large enough. Thus G(w) is bounded when Rew:--0.
Thus the theorem of Fragmen-Lindelof confirms the boundedness of G{w)
on Rew=0. Returning to the F(z), it follows that F(z2) is bounded on the

positive real axis (where 2= is certainly solved for z). Hence F(2) is

w
bounded on the whole Rez=0, again by the Phragmén-Lindel5f theorem. q.e.d.

End of proof of the sufficiency of Theorem 3. Let u be an element of
SZH(U\K). The image d-u() is 2 column of holomorphic functions on {N,}
which satisfy, by Lemma 5, the estimate |J()d-u(0)|=C, .. exp (Hyx(©)4¢lIm D) for
any >0 and for any entire infra-exponential funetion J{{). Now choose
Ji), -+, Jn(C) s0 as to satisfy Lemma 6, apply for each of them the estimate
above, and add all these inequalities obtained, then, after dividing the both sides
by [JUD) -+ TN(0)], we are lead to the following estimate:

id- ()| <C. exp (- A% it (l?:",ftl-i-iﬂ + H®)+ eIm ] ) .

Here, as remarked in the Lemma 6, A may be chosen as large as desired. Now
suppose that any of the N, is not elliptic, then each N, contains a real infinite
point. Fix an N, and choose the coordinates so that one of the real infinite
points on N, agrees with (c0,0,---,0). On this choice of the coordinates, we
can also assume that N; is in the normal place with respect to {,-axis. Ex-
panding the defining equation of N; to the Puiseux series with respect to {; at
(c0,0,---,0), we see that

14 12 > 1 14 w
{1, 82y, Ca yf(il)) N l51'>7 B SR [ R |
where )= S ashe
K=k,

is an open subset of N;. Here the coefficients a;, g, k, and the radius of con-
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vergence %— all depend on &,---,£..;. We note that this expansion takes

place at (0, 0,---,0), from which it follows f(£,)/5;—0 when {~oco. This shows

that % <1. Now, for fixed &, -+, .1, the function F({;) of one variable &,:

FCy=d-uls, -, Las, FE)

is a column of ¢-valued holomorphic functions on IC1l>—;— , and satisfies

\ LA S
FE)IsCoexp{ — A + 2
[Feal= ex"{ <log(lf(Cx)|+M) 1og<1cjx—;~M>)

VFHK(C[ st ')gn-—! 7f(<:1))_!‘ S]Im (51 Ty cnwl 1f(cl))[} .

k
Here, If(t’ll)léC'lillT0 and %’-<1. Therefore the fI{,) in the symbol Hk(-) and

¢JIm f(£)| are both cancelled by the term ——gm

sufficiently large. Thus, omitting unnecessary terms and replacing the terms
including only &, -+, {.-; by constants, we have

veqronnf ALl
IFE<C, exp( i T 4alImCxl)

for sufficiently large [{;|. Here @ is a positive constant depending only on the

diameter of K. We can assume that —‘2— >2a, so that, applying Lemma 7 to

F(,) on each of the half spaces [Im il|>% , we conclude that all the branches

of F(£,) are bounded. Hence F(t?) ({=C(}’?) is a bounded, one-valued funection of
t on |t|>d¢""". Thus by Riemann’s theorem, it is also holomorphic at t==oco,
On the other hand, we have, by the estimate above, t*F(t9)—>0 when t-»>+ oo,
for any k=0,1,2,---. This implies that all the Taylor coefficients of F(t%) at
t=oco vanishes. Thus we have F({,)==0. We note that this takes place for
each fixed &o, -, {noy for 18l <1, 10l <L

Returning back, we conclude that J—u(Z)EO on some open subset of N;.
Since N; is irreducible by the assumption, the set of the regular points on N;
is connected and we conclude that d-u=0 on the whole of N;. Making the
same arguments for each N;, A=1,---,! we finally obtain d-u=0, which means,
on account of Lemma 4, the triviality of the image of the map ¥ (U\K)/ .7 (U)—>
BAUNK) ZoU). g.ed.

A similar proof gives the following

PROPOSITION 8. In order that & S(U\OYE 5(U)=0, it is sufficient that each

when we choose A
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N; has a real infinite point where the defining equation of N has a Purseux
expansion beginning from the constant term. Here Oc U is a point belonging
to U.

This can be proved by using the second estimate of Lemma 5 and by the
Fragmen-Lindel6f theorem of the usual type.

As a realization of this rather unsightly condition, we have

THEOREM 9. Let p(Si, -+, {a) be an irreducible polynomial? of degree m.
Let p,, be it's principal vart. If for some k=1

ak—l ak

1) pm(]-, 0!"'; O)ZOy“' ’ éz:g:;pm(ly 0,“‘,0):0, '&:—{pm(l: 0:"'10):;‘:0

2) p i3 of degree Sm—k with respect to {,
then C3(UNO)/Cs(U)=0,

PrROOF. By assumption, (c0,0,---,0) is a real infinite point of N(p)=:{;
p({)=0}. Expanding the solution &, of p({)=0 to the Puiseux series at this
point, with respect to &;, we see that this series begins with a constant term.
In fact, we can make the following elementary consideration. Rewrite

PO =)+ LEpy(0) + el 5P+ ps(0) =0 ,
where 9,(2) is of degree=k+1 with respect to ., p:({) is of degreesm—k--1
with respect to ¢, ps is of degree<k-1 with respect to {,, and ¢ is a constant.
By assumption ¢#0. On the other hand, p({) is of degree<m—k with respect

»

to {;. Noticing that —2’—‘ —0 when {;—co, we can rewrite the terms q({;,---

1
CapCFtlE2 in pi(0) as
_C_">k2_k. Ekitke—k k:__cm—-k. k. (Eﬁ).
<C1 (I gx Cn 1 Cn (4] Cl (I ]
because k;—k=1 and k+k,—k=m—k on account of ki+k.=m. Also we can
rewrite the terms in (Ep. () as {ﬁ-C’{‘“"-o(—%—)-q. Thus dividing the both sides
1

of the equation by c{7*, we get the following equation on {,, which is equiva-
lent to the initial one when [{,;] is large:

{i(l + o(%)>+(a polynomial of degree=k—1 on {,)=0.
1

We see easily that this equation has bounded coefficients, and the coefficient of
the highest degree is indeed apart from zero when |{,| is large enough. Thus

% If p is an irreducible polynomial, the normality with respect to L. is not necessary,
since the associated Noetherian operator is only the restriction to N(p).
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our equation has only bounded solutions when |Z,| is large. Therefore the
Puiseux expansion of {, with respect to £, must begin with a constant term.
g.e.d.
REMARK. 1) The equivalent condition for CH(U\O)/CHU)=0 is not yet
known. We only remark that this is not determined by the principal part
alone (sce e.g. examples of Grusin {3]). 2) In the case of k=1, the second con-
dition is excessive, and this is Grusin’s theorem ([3)). 38) It is easily seen that
if K has an interior I;’t;’fr,-i, CHUNK)/C;U)+0 always. For example, take a
solution u€ & (U) of pDyu~f for fe @ 5(K). Then, this u is a non-trivial
element of & (U\K)/%”;(U). On the other hand, when K is convex and thin,
somnce interesting aspects occur.
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