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SoMeE OPEN PROBLEMS IN HYPERFUNCTION THEORY

Akira Kaneko*

0. In this note I shall present some of the unsolved problems
with which the theory of hyperfunctions is deeply concerned.
Since these are gathered based on my personal knowledge, they are
rather prejudiced, and even may contain trifling ones. I only
expect that they may entertain those who are newly intending to
study the theory of hyperfunctions. In the sequel we assume the
knowledge on the standard terminology in the theory of
hyperfunctions. See e.g. Komatsu [1], Morimoto [1] or Kaneko (1]

as a reference book.

1. The theory of hyperfunctions of one independent variable
is very easy to understand. We shall show that nevertheless we
have some open problems concerning it, whereas there can be no
more such possibility for distributions.. This is, so to speak,
because of the difficulty of the study of essehtial singularities
of holomorphic functions compared to that of poles. Let f, g
be two hyperfunctions with supports in x>0. Then we can define
their convolution by

-

(1) (r*g)(x) =I f(x-ylgly)ay.

S -]

Most naturally, the right-hand side is interpreted as the
integration along fibers of the hyperfunction f(x-y)g(y) in two
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2 A. Kaneko

independent variables x, y whose support is proper with respect
to y. If we wish to manage it within the framework of one
variable, we can define f*g locally as the difference of the

boundary values of the holomorphic function

(2) j F(z-2)6(2)dz,
Y

where F, G are the defifling functions of f, g respecti\(ely
and y 1is a path surrounding the positive real axis in the
negative direction, with the endpoints lying sufficiently far
from the origin compared to- the region where =z 'is now

restricted (see fig. 1).
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fig. 1

Problem A. Does f¥g=0 imply either f=0 or g=0?

In the case of distributions this is known as Titchmarsh's
theorem, and is used in the basis of Mikusifiski's operational
calculus (see e.g. Yousida [1]). Let C,» D', and B, denote
the totality of continuous functions, distributions and
hyperfunctions respectively, with supports in x>0. Then they
constitute commutative algebras over C( with respect to the
convolution product.

We have
M
(3) c,c0',<B,.
By Titchmargh's theorem we can construct the quotient field t‘:

of C+. We see easily that D'+C —C:, where elements of D'+

correspond to those fractions whose denominators consist of
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polynomials of x+==max{x,0}. We are therefore interested in the

following.

Problem B. What is the relation between E:' and B ?

Of course B+CIC+ would imply the affirmative answer to
Problem A. The significance of these problems is as follows:
Mikusihski's interpretation of operational calculus is too
abstract though it is completely powerful. Interpretation via
D'+ is much more intuitive, but it can legitimize only finite
order derivations. Therefore we expect that the use of B+
may give more concrete and yet sufficiently powerful
interpretation. (Note that we can perform anyway a kind of
hyperfunction theoretic operational calculus even if the answer
to Problem A is negative. Note also that Yosida [ 1] contains no
such viewpoints in spite of its subtitle.) These problems were
proposed and tried by a graduate course student as his master's
thesis more than ten years ago, but he himself failed to solve
it.

Remark 1. For the distribution case the above mensioned
Titchmarsh's theorem follows from the following more strong one

of Titchmarsh:
(L) Ch supp f*g=Ch supp £+ Ch supp g

(see e.g. Hormander C11, Theorem 4.3.3). This formula fails true
for hyperfunctions. In fact, an example in Pdlya [11 (p.597)
shows that there exist hyperfunctions f, g such that the convex
hull of their supports agrees with [-1,0] and [0,1]
respectively, but supp f*g reduces to the origin. (In Pélya's
paper this assertion is expressed by means of the indicator
diagram of the entire functions %(C), é(c) and f£(z)g(t), where

~

denotes the Fourier transform:

E‘(g) = Im e_ixcf(x)dx.

-00
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Needless to say, Pélya did not know the theory of hyperfunctions.)

Remark 2. Recall that we havé the notion of Fourier hyperfunctions
on the compactification D= {-»}URU{=} of the real line (Sato
£1]1, Kawai [1], [2]; see also Chapter 8 of Kaneko [1] for more
popularized expositién). Let Q@ _ denote the totality of |
"Fourier hyperfunctions with supports in 0<x<«. Then there .
exists a natural surjection mapping Q+-+B+ of restrictiog. IN
other words, every element of B+ can be ?extended" to an
element of Q_ with the ambiguity of those elements of 2,

with supports in {-=}. The Fourier transformation maps Q_
injectively to a space of holomorphic functions on the lower half
plane Im £ <0. Therefore the convolution algebra Q+ is
isomorphic to a usual algebra of holomorphic functions and hence
contains no zero divisor. In terms of Q+ Problem A may be ‘

rewritten as follows:

Problem A'. Does Q, contain elements f, g such that
supp f # {+=}, supp g# {+=} but that supp f¥*g={+=}?

2. In Kaneko [2] (corollary 1.8) ‘we proved that a hyperfunction
of one variable f(x) with support in [-1,1] can always be

represented in the form
f(x) = Jl(D)ul +J,(D)u, + J3(D)u3,

where u, are measures with supports in [-1,1] and JJ(D) are

local opirators, i.e. infinite order differential operators
corresponding to the convolution operators by hyperfunctions with
supports concentrated at the origin (and JJ(;) are the Fourier
image of them). For the necessity to further discussion let us
recall the outline of the proof: First we regularize f to a
continuous function g as f(x)==Jl(D)g(x) regardless to the
support. Here Jl(D) is in general an elliptic local operator

of the type
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- 2
(5) 3= 1 (1e—E—r],

n=1 (n?(n))
with a function $(t) of t>1 monotone increasing to +=.
Then we cut the support of g(x) to [-1,1]. The ambiguity at
the end x=+1 gives the other two terms J2(D)6(x+l),
J3(D)6(x-1). Examining this proof M. Sato conjectured the
following.

Conjecture C. Every hyperfunction f(x) of one variable with

support in [-1,1] can be represented by two terms as
f(x) = Jl(D)pl +J2(D)p2_

The background of this conjecture is as follows: We could prove
this conjecture if in the above we could choose Jl(D) among

the hyperbolic local operators, because then supp g will spread
out only on one side, say x>-1, and the ambiguity would appear
only at one endpoint x=1. This is not true in general because

the general growth order

0(65|§|+|Imcl) for any €>0

of the Fourier image of hyperfunctions cannot be dominated by a

hyperbolic local operator of the type

(6) 3 (e)= T 1*?}53)‘]-

n=1
But Sato conjectures that gathering the factors of ;‘(c)
corresponding to the zeros apart from the real axis, we can first
execute the factorization t:(;) =J0(c);(c), where é(l;) is now so
moderate as to be dominated by (6). Then the above argument will
apply to g(x) to obtain the. expression by two terms. Thus the

following is much more fundamental:

Conjecture D, Let f(x) be a hyperfunction with support in
[-1,11. Then there exists a local operator JO(D) and a
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hyperfunction g(x) with support in [-1,1] such that
£(g) =J,(z)e(t) and that

4 N © iE

(1) le(e)| =1 |1+—F—3—| on EgR.
. n=1 npin

This is rather a problem in the theory of Functions. It often

heppens that a problem in. the new theory evokes a new problem in

the classical theory. We must not neglect the education of

classical mathematics!

Remark 3. The growth condition (7) is equivalent to the following
' r° log|g(£)|

00

ag < 4o,
1+ [g]2 -

That is to say, g(x) reduces to a non-quasi-analytic functional.

Remark 4. As a for a distribution f(x) it is known even in the
case of n2>2 variables that if its support is contained in a
regular compact set K then f(x) can be represented as a
finite sum of derivatives of measures with supports contained in
K (see Schwartz{1l, Théoréme XXXIV). For a hyperfunction f(x)

I once tried to prove a similar representation on interpreting
the derivatives in the sense of local operators, but succeeded in
it only when f(x)is in some subclass of non-quasi-analytic
functionals. This is because such f(x) can be regularized by

a local operator of hyperbolic type (see Kaneko [21). Now I

rather conjecture the contrary:

Problem E. Give an example of a hyperfunction with compact convex
support K such-that it cannot be represented as a finite sum of

the form ZJj(D)uJ by measures with supportg in K.

3. Let S Dbe a hyperfunction with compact support. The
solvability of the convolution equation S¥u=f in the space of

hyperfunctions, or equivalently the surjectivity of
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s*: B(R")+B(R™) was studied in the basic paper of Kawai [ 11, [2].
Following Ehrenpreis' theory he presented the condition (S) (S
implying the initial of "slowly decreasing") as a sufficient
condition for the surjectivity. It therefore remains to show
that

Problem F. Is the condition (S) also necessary for the
surjectivity of the convolution operator S¥?

In the case of distributions the nécessity of some condition is
-clear from the fact that the convolution operator by a function
S of class C: can never act surjectively on D'(R"). In the
case of hyperfunctions, however, we do not have a regularizer
with compact support. Hence we do not yet know the solution to

the following.

Problem G. Give an example of S* which is not surjective on
B(R").

Kawai (and aoso Schapira [1]) showed that every distribution
S with compact support satisfies condition (S), hence acts
surjectively on B(R®). This can be generalized to any S of
non-quasi-analytic functional (c.f. Ehrenpreis [1], Proposition
4.5). Kawai also showed that local operators act surjectively on
B(Rn). Therefore in the .case of one variable Sato's conjecture

D will imply the following.

Conjecture H. In the case of one variable the convolution
operator S* is always surjective on B(R) for any ‘
hyperfunction S with compact support.

This means that the condition (S) is automatic and of no use in
the case of one variable. One may therefore expect the following
instead of Problem G:

Conjecture G'. The convolution operator S* is always surjective
on B(R") also in the case of n>2 variables.

The convolution operator S¥* acts also on the space of Fourier



8 A. Kaneko

hyperfunctions Q(Dn). Hence the above problems have their
conterparts on this space. According to the study of Kawai [1]
the condition (S') for the solvability in this case seems a
little different from the former one (S). But actually we do not
know if it is really.different or evén substantial for the
surjectivity (though for n=1 Kawai [1] proves the necessity

of (S')). Further, for this case in order to clarify the matter
M. Sato proposed to study convolution operators with non~éompact
supports. Then we have a regularizer, i.e. rapidly decreasing
real analytic functions such as e » hence the surjectivity
surely requires some non-empty condition to S. It will be a
good problem for those newly intending the study of the theory of

Fourier hyperfunctions:

Problem I, Let S be a rapidly decreasing Fourier hyperfunction.
Find a necessary and (or) sufficient condition for S so that
S*: Q(Dn)-*Q(Dn) is surjective.

At the first try we may put the restriction that S 1is a
rapidly decreasing real analytic function of modified type
outside a compact set. This assumption will make us possible to

imitate the case of S with compact support.

k. Concerning convolution operators we leave still other
problems. For example, Kawai([2], §4) determined elliptic (i.e. .
analytic hypoelliptic) convolution operators and declared that he
found much more abundant class of elliptic convolution operators
than Ehrenpreis did, because Ehrenpreis (1], Theorem 5.16) found
after all that an elliptic convolution operator S* in the
distribution category is nothing but the composition of an
elliptic differential operator and a translation. However, as

a matter of fact Kawai only showed that there exists an elliptic
local operator J(D) of really infinite order. Therefore we do

not know any example of convolution operator which is essentially
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different from a differential operator or a translation.

Conjecture J. An elliptic hyperfunction convolution operator is
always the composition of an elliptiec local operator and a

translation.

5. The general theory of linear partial differential equation
P(D) with constant coefficients in the framework of
hyperfunctions was mostly doné up to ‘the time of Kawai (13, C2].
It remains, however, some problems still open. Such is the

characterization of evolution operators:

Problem K. Find the necessary and sufficient condition for P(D)
so that it has a fundamental solution E with support contained
in a closed half space <x,9> >0.

This problem was proposed and solved by HOrmander for the case
of distributions (see L1], Theorem 12.8.1). We may follow his
argument based on the a priori estimate (though I did not dare to
do it). A new, hyperfunction theoretic approach would be more
interesting. Recall here the general principle that to solve a
same problem the case of hyperfunctions is much easier than the
case of distributions and the solution may be written in terms of
the principal part of P(D) only. Note also that the operator
al-ag on R2 is of erlution type only to the direction
9=(1,0) in the distribution sense, but to every direction in
the hyperfunction sense because it has a hyperfunction fundamental

solution with support contained in the half line {x1=0 , -_Px2;0}.

6. In the hyperfunction category, the problem of hyperbolicity
may seem to be already well clarified even in the micro-local
level. When looking at the details, however, there still remain
very fundamental problems. For example, we have the following

attractive.

Problem L. Find the necessary and sufficient condition for the
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local initial data uo(x‘), ul(x') so that the Cauchy problem

2 2 2y _
{Dl+'“+DmJ-D)u-O

u(0,x') =u.(x") (0,x') = u, (x')

(8)

has a local hyperfunctlon solutlon
We have the well known sufficient condition

2

(9) 5.8 (x)ER I x{gp 4w gD <ED), 3=0,1

n-1
(I-hyperbolicity of Kawai [3]). Also we know that if s S. uj(x )
contain a direction in the elliptic region 5 4--,-+-g l>§2,
then uy (x') must satisfy a relation written by a pseudo—
~d1fferent1al equation there and mlcro-locally on a neighborhood
of this direction this relation is necessary and sufficient for
thg solvability of the Cauchy problem (Kataoka £1], Proposition
1.3). What remains to be clarified is therefore the condition
which uj(x') should satisfy at the "glancing region"
524--..+-gn_1==g§. We have yet no idea on what kind of language

this condition will be expressed.

Remark 5. The condition for the micro-local solvability of the
non-characteristic Cauchy problem for an operator P(D) with

constant coefficients

P(D)u=0

(19) adu
——E-(Ox )—u(x') 0<Jj<m-1,
ax

1
for the hyperfunction data satlsfylng S.S. ug (x")c R -1 I, (I
being an open subset of s” ) is easily seen to be that of
I-hyperbolicity, i.e. that the equation Pm(cl,E )=0 for Z,
has only real roots when E'€ I. For the distribution case the
answer to the corresponding problem seems to be ﬁnknown. There
are some algebraic difficulty in micro-localizing Garding's

argument for the necessity part.
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T. We can consider the solvability of the same problems in

only one side x1>-0 or xl< 0. In this case the initial wvalue
problem reduces to the unilateral non-characteristic boundary
value problem, and this is more basic because the solvability of
the Cauchy problem is equivalent to the solvability of the
unilateral boundary value problems to both sides. As for the
formulation of boundary value problem see e.g. Komatsu-Kawail 17
for the hyperfunction category and Kaneko [3], LL4L] for the
distribution category. The compatibility of both theory is
remarked in Kaneko Cl4]. That is, if a local distribution
solution u(x) of a linear partial differential equation

P(x ,D)u=0 with C  coefficients which is defined on x. >0

1

is prolongeable as a distribution to x, <0, then we can

1
consider the boundary values

uj(x')=1im-a—u(s,x'), 0<j<m-1,
e+0 3xJ
1
in the sense of distributions, but if P(x,D) has real analytic
coefficients, these values agree with the boundary values
J J .
9 u/axllxl_*+0 in the sense of hyperfunction boundary value
theory. The converse is not known even for an operator with

constant coefficients:

Problem M. Let u be a local distribution solution of
P(x,D)u=0 on X, > 0. Assume that its boundary values

J J . .

3 u/i)x1|x + 40> 05J3gm-1, in the sense of hyperfunction
boundary value theory, are all distributions by chance. Then
can the solution u be prolonged as a distribution to X, £ 0?
8. Likewise we leave the problem of characterization of
partially (semi-)hyperbolic operators. Leray in [1] introduced

the notion of partial hyperbolicity to characterize the

operators for which the non-characteristic Cauchy problem
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P(x,D)p.=0

(11) a9u
—0,x')=u (x'), 0<j<m-1,
3xJ J ==

is solvable (in so;g Gevrey class) for any data u,.(x') which
are hplomorphic in a part of variables x"= (x2,o-?,x£) in the
initial plane. Accordipg to him P 1is called partially
hyperbolic modulo the linear subvarieties x"=const. if.the
equation Pm(x,l;l,g')=0 for Zy has only real roots when &'
is real and E"= (52,-“ ,é;!_) =0. It seems to me, however, that-
this condition of Leray rather concerns solvability for those
data which are entire holomorphic in x". See Kaneko [6],

. pp-428-429. Leray himself requirés~some additional condition on
the characteristic roots to ‘establish the solvability of this

Cauchy problem. We therefore introduce the following:

Conjecture N. The necessary and sufficient condition on an
operator P with constant coefficients for the local solvability
of the Cauchy problem (10) for any hyperfunction initial data
uj(x' ), 0<j<m-1, containing x"= (x2, .- -xt) as holomorphic

parameters, is that the roots of Pm( cl,c') =0 for g, satisfy
(12) IIml;lléblImg'l-l-cl;"l, when '€ Cn-l,

with some constants b, ¢>0.

The r;otion of hyperfunctions with holomorphic parameters is
just the hyperfunction variant of partially holomorphic property
fot the usual functions or distributions. Note that condition

(12) is in general stronger than the condition
(13) o Im;l=0 for ' real and " =0

of Leray, though' they agree when the roots are simple. In Kaneko
[6], Corollary 2.8 the sufficiency of the above condition is
proved for the case £=n-1, and it may be easily generalized to

an arbitrary £. So we are mainly interested in the necessity
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part. We may likely cons der the solvability of the unilateral
boundary value problem on ixl> 0. (Then the corresponding )
condition must be (12) with +In gz, in place of | Tm cl| in the
right-hand side). These problems may of course be considered for
operators with variable coefficients. In that case we would have
to be content with partial results. C.f. Hamada-Leray-Wagschallll.
The distribution variant of thesé problems require further con-

ditions on the lower order terms and seems not yet studied at all.

9. We shall finish this note by showing one of the main research
subjects of the author. Let P(x,D) be a linear partial
differential operator with real analytic coefficients whose
principal part may completely vanish at the origin. Find the

necessary and sufficient condition for each of the following:

Problem 0. When P(x,D)u=0 has a hyperfunction solution with

support concentrated at the origin?

Problem P, When P(x,D)u=0 has a hyperfunction solution u
such that sing supp u={0}?

Problem Q. When P(x,D)u=0 has a hyperfunction solution u
with the irremovable isolated singularity O (i.e. P(x,D)u=0
on 9©\{0} for some neighborhood © of O but never P(x,D)u=0

for any extension W of u to Q)?

Problem R. When P(x,D)u=0 has a real analytic solution u
with the irremovable isolated singularity O0?

In Problem R we can understand. the irremovability both in the
sense of hyperfunction solutions or of real analytic solutions.
This ambiguity is taken over by virtue of the answer to Problem
P. Problem O solves the uniqueness of the extension as a
hyperfunction solution in the removable case. Concerning these

problems an interesting partial answer will also be welcomed.

Remark . Via the duality argument Problem O is equivalent to the
following.
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Problem o', When P(x,D) acts surjectively on the germs of
holomorphic functions at the origin?

Hence in view of the Cauchy;Kowalewski theorem we see from this
the well known partial answer to Problem O: P(x,D)u=0 has no
solution with support concentrated at the origin if the principal
part Pm(x,D) of P has a term different from zero at the
origin (or equivalently if P has at least one non-characteristic
direction at the origin). Thus we are essentially concerned with
the case Pm(O,D)==0. This problem is not at all easy even for
operators of first order with two independent variables. See
Oshima [ 1] for a partial answer. It is related with the famous
élassification problem of the vector fields in the analytic
category. Hence the problem of small divisor equally interferes
with us, and a complete answer to such problems may require
mathematics of the 21-th century! To be collected by a similar
line is the problem of classification of the diffractive points
for the wave equation in the analytic category (Oshima [21).

Very close to this is the following.

Problem S. Find the necessary and sufficient condition for a

linear partial differential operator in two independent variables
] 3
a(x,y)a—x-+ b(x,y)-53r-+ c(x,y)

to act surjectively on the germ of hyperfunctions at O.

Miwa [1] studied the case wvhen a and b are real valued
homogeneous linear functions of x, y and c¢=0. (He also
considered some cases of three independent variables.) Of course
the problem has a sense for a general operator P(x,D), but it
should be noted that the problem is sufficiently difficult
already in the above form.

As for furpher partial results concerning these problems see
Kawai {41, Kaneko [53, £7J, L83, Oaku 11, c21. These papers

will also serve to find more fresh research problems.
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10. In concluding we again femark that these problems are rather
particular. We expect anyway that the reader will utilize them
to enrich the theory of hyperfuncfions by bringing in what are
more important than the problems themselves. For the specialists
in the theory of linear partial differential equations we
introduce the following opinion of Prof. S. Matsuura of about ten
years ago: "Hyperfunctions will be the most natural tools to
treat analytic solutions." Perhaps even now this may be a common
understanding for most of the non-specialists of hyperfunction
theory. As such the above mentioned researches on continuation
of real analytic solutions may have a little confirmative value.
Another such example is the researches on the existence of global
real analytic solutions whose hyperfunction theoretic treatﬁent
was originated by T. Kawai. (See Kaneko £931 and articles cited
there. The reader may also find several fresh research problems
in this field.) However we rather expcet that the reader can now
well share with us the recognition that hyperfunctions have their
owvn "raison d'etre" apart from their utility to other fields.
Finally we wish that the reader will confirm this and seek more
advanced research problems for himself in the active reports and
papers such as are given in the proceedings of the RIMS
symposiums (Surikaiseki-kenkyusho Kdokyuroku) on hyperfunctions
(No's 108,114 ,145,162,168,192,201,209,225,226,227,238,2L48,266,281,
287,295,324 ,341,355,361,410,416,431,459,468,497,508,533,558) or
in the following ones:

"Hyperfunctions and Pseudo-differential Equations (Proceedings
of Katata Symposium 1971)", Lecture Notes in Math. No. 287,
Springer, 1973.

"Proceedings of 0ji Seminar on Algebraic Analysis 19T76", Publ.
RIMS Kyoto Univ. 12 Supplement (1977).

"Complex Analysis, Microlocal Calculus and Relativistic Quantum
Theory (Proceedings of Les Houches Colloquium 1979)", Lecture
Notes in Physics, No. 126, Springer, 1980.
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‘"Group Representations and Systems of Differential Equations",

Advanced Studies in Pure Mathematics No. E, Kinokuniya, Tokyo,
198L.
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